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Abstract—The strength of a thin spherical dome loaded radially along the edge of a circular cut-
out is determined by using the theorems of plastic limit analysis. Complete solution of the problem
comprising of the collapse mode and the associated stress resultant field is obtained. It is shown to
be valid for a wide range of values of the shell thickness as well as the sizes of the cut-out and dome.
The problem also serves to illustrate how advantage can be taken of the interrelation between the
dual static and kinematic problems in constructing a complete solution.

|. INTRODUCTION

Spherical shells, when used as storage vessels or containment chambers, arc usually subjected
to local loads, such as at the junction where a smaller pipe meets the main shell. A typical
example is the junction of a reactor pressure vessel with the ducts connecting it to the
stream-rising units. Current interest in such problems is indicated by a recent book (Luka-
siewicz, 1979) fully devoted to the clastic analysis of locally loaded plates and shells. There
is a vast amount of literature on the clastic analysis of spherical shells under local loads
(Reissner, 1946 ; Flugge and Conrad, 1956 Byjlaard, 1957 ; Bailey and Hicks, 1960 ; Leckie,
1961 ; Koiter, 1963), as well as some papers comparing the theoretical results with the
experimental data (Tooth, 1960).

Plastic analysis of spherical shells has been tackied by much fewer rescarchers. Onat
and Prager (1954) performed the limit analysis of the axisymmetric case of a built-in
spherical cap subjected to uniformly distributed pressure. Limit pressure for a spherical cap
with a cut-out has been obtained by Hodge and co-workers (1963). Dinno and Gill (1965)
have treated the problem of obtaining limit pressures for cylinder-sphere junctions, con-
sidering the case of a spherical vessel with a cylindrical branch as well as a cylindrical vessel
with hemispherical ends. However, all the applications of limit analysis to spherical shell
problems quoted above, deal only with non-local loadings such as uniform pressure. As an
example of an axisymmetric case of a shell subjected to local loads, we consider the
problem described in Section 2.

In the literature on shell limit analysis, in general, very few lower bound solutions have
been obtained owing to the difficultics of solving the equilibrium equations and ascertaining
the satisfaction of yield condition everywhere in the shell domain. Complete solutions are
even more scirce because of the additional demand that the static and the kinematic fields
be linked by the flow rule. Of particular interest in obtaining the complete solution to the
problem poscd below is the simple manner in which advantage can be taken of the inter-
action between the dual static and kinematic problems : static boundary conditions on two
of the stress resultants indicate the nature of the kinematic fields in the plastically deforming
parts, which, in turn, give hints regarding the remaining stress resultants. A novel feature
of the static solution is the interpretation of the equilibrium equations that some of the
stress resultants can be regarded as “generating functions™ for the other variables of
equilibrium ficlds, and that prudent choice of these functions aided by kinematics leads to
good lower bounds to the limit load. For the problem considered, it is also demonstrated
that in the limit state, one of these generating functions is discontinuous. The need for
discontinuous statically admissible stress resultant fields occurs very frequently in the limit
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Fig. . Cross-section of a clamped spherical dome with a circular cut-out. The applied radial load
at the cut-out is indicated by arrows. The stress boundary conditions at the cut-out and the velocity
boundary conditions at the clamped edge are as shown.

analysis of shells and a general treatment of such solutions for cylindrical shells has been
reported (Srinivasan, 1984).

2. THE PROBLEM

A clamped spherical dome is considered with a circular cut-out at the top (Fig. 1) and
subjected to a radial load of constant magnitude @ per unit length on the circumference of
the cut-out. The radius of the shell is R and the thickness is T. The angle ¢, a measure of
the size of the cut-out, and the dome angle x are both measured from the axis of symmetry
07 as shown,

The dimensionless geometric parameters of the problem and their ranges of values
considered are

e non-dimensional thickness = 774R, 0 < ¢ < min (¢, 0.025)
¢y angular size of the cut-out, 0y <n/2
a:  dome angle, thy <a < n/2

The validity of the thin shell theory imposes the limits on the values of & while in the case
of ¢, and x, we restrict ourselves to the stated limits,

The material of the shell is assumed to be isotropic and elastic-perfectly plastic with
high enough modulus of clasticity that the geometry changes due to elastic deformations
are negligible. We wish to determine the limit foad @Q* together with the associated
velocity and generalized stress fields that satisfy all the governing equations as functions of
the parameters that define the geometry of the structure and the yield strength of the
constituent material. Theorems of limit analysis are the main tools used.

The geometry of the shell and the type of loading considered possess OZ (Fig. 1) as
the axis of symmetry. The only independent variable of the problem is chosen to be ¢, the
angle between the local normal to the shell surface at the point of interest and the axis OZ,
It is enough to consider the range ¢, < ¢ < « and all the dependent variables are defined
over this interval.

3. STATICS

At a generic point on the shell mid-surface, let (i, i, 0,) denote the right-handed triplet
of unit vectors that are in the longitudinal, azimuthal and radial dircctions, respectively.
The corresponding stress resultants are nondimensionalized by dividing the actual mem-
branc forces and the transverse shears by Ny = 0,7 (where g4 is the uniaxial yield stress of
the shell material) and the bending moments by M, = ¢, T°/4. Because of the symmetry
presentin the geometry of the loaded structure, the non-zero components of stress resultants
per unit length of the shell mid-surface are the membrane forces (n,.n,). the bending
moments (m,. m,) and the transverse shear, g,. Since ¥, is the largest membrane force and
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M, the largest bending moment that a unit length of the shell can carry, the four dependent
variables. n,. n,. m, and m, are less than or equal to unity in absolute value.

The dimensionless stress resultants satisfy the equations of equilibrium (see, e.g. Flugge
(1960)

(9o sin @)’ +(nyg+n,) sin g =0 (1a)
(ny sin @) —ny cos p—q, sin ¢ =0 (1b)
e{(my sin @)'—my cos ¢} —q, sin ¢ =0 (lc)

where a prime denotes the derivative with respect to ¢. [t is to be noted that eqns (1) were
derived under the implicit assumption that all the stress resultants are continuous and
differentiable. However, a consideration of discontinuous fields reveals that for the shell to
be in equilibrium, the stress resultants n,. m, and ¢, must be continuous whereas n, and
m, can be discontinuous.

The stress boundary conditions of the problem are

ny=my,=0 on ¢=4d, 2)

Detining a dimensionless load parameter 4 = Q/N,. we find that the load carried by the
shell is related to the stress resultants by

A=gqg, on ¢ =4¢,. (3)

In the usual formulation of shell theory, the transverse shear strain rates are demanded
to be zero Lo the order of approximation considered, resulting in the transverse shear stress
resultant g, playing the role of a “reaction™, and henee, the yield condition doces not depend
on it. Onat and Prager (1954) have obtained such a yield criterion for shells of revolution
composed of a material obeying the Tresca yield condition. In general, the yield surface
so generated is quite complex to work with, One tractable procedure is to replace it with
a simpler surface. The following approximation is chosen that corresponds to a four-
dimensional cube of “size™ two

lnpl < 1 ml <1, myl < 1 |my| < 1. @

It can be noted that this approximation is really not suitable for an isotropic shell. However,
it captures the essence of the magnitude constraint imposed by yield in a simple manner
that is advantageous in energy dissipation calculations and in the establishment of safe
equilibrium ficlds. Moreover, the bounds on the limit load A* obtained with yield condition
(4) can be used to obtain bounds with any other yield condition by employing the well-
known technique of bounding the interior and exterior of the yield surface of interest with
the cube (sce, e.g. Hodge (1963)).

4. KINEMATICS

In order to construct the dual problem, we let (v.w) denote the dimensionless
components of the velocity of the mid-surface of the shell in the local coordinate frame
(i,.1,). Morcover, we let & denote the dimensionless rate of rotation of a surface element
about the i, direction. For the present problem, the boundary conditions for these field
quantitics are

r=w=¢=0 at ¢=a (5)

The principle of virtual work for the problem is obtained by multiplying each of the
equilibrium equations, eqns (1), by (w, ¢, &), respectively, and integrating the sum of the
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resulting products over ¢, < ¢ < 2. Assuming the fields to be sufficiently smooth and
satisfying boundary conditions (2). (3) and (5). we obtain

~
x

Awy Sin ¢, = J [(n,e, +nwe, +emyk, +emk,+q,7,] sin ¢ do (6)

L)

where w, i1s the normal velocity w at ¢ = ¢y, ¢, = "+ w and e, = r cot ¢+ w are the
membrane strain rates. ky=¢ and k, =< cot¢ are the “‘curvature” rates and
7o = ¢+ v —w'is the transverse shear strain rate.

For yield condition (4) employed here. the accompanying plastic deformation is
controlled by the following flow rule:

when |n,| < |, e; =0
ny =1, ey 20
ny=—-1 ¢,<0 7N

and similar statements relating the remaining stress resultants n,, my, and my, to their
corresponding duals, ¢,. k, and k,. The usual approximation for thin shells that the
transverse shear strain rate is zero implics

E= 4w, (8)

The strain rates obtained using eqn (8) are

Cp =0 4w

=pcot p+w (9a)

[

while the curvature rates become

/\',‘5 = (—l'+lv’)’
ky = (—v+w’) cot . (9b)

Boundary condition (5) can now be restated as

r=w=wuw =0 at ¢ = (10)

5. THE COMPLETE SOLUTION

In the limit analysis of a rigid-perfectly plastic structure, a complete solution is com-
prised of a statically admissible stress field and a kinematically admissible velocity field such
that the strain rates generated are related to the stress field under the limit load by the flow
rule at every point in the structure. It is usually difticult to obtain a complete solution, and
so one tries to estimate the limit load by obtaining upper and lower bounds to the limit
load which are closc to cach other by using the theorems of limit analysis. Equation (3)
gives 4, a lower bound to the limit load A*, when a statically admissible ficld satisfying the
cquations of equilibrium (1), boundary conditions (2), and yield condition (4) is chosen.
The upper bound 4, is obtained by choosing a kinematically admissible function that
satisfies velocity boundary conditions (10), and is given by (refer to eqns (6) and (7))

l 2
—— f [leg] + et +elkyl +elkol] sin ¢ de. n

Y wy sin ¢y Js,
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The maximization of 4, or the minimization of i, enables i* to be determined. However,
such an optimization procedure has to be performed over the sets of static or kinematic
fields that may exhibit certain discontinuities.

The present aim is to obtain a complete solution to the problem posed. Taking hints
from the stress boundary conditions. a kinematically admissible velocity field is chosen.
Use of the upper bound theorem provides a pair of coupled transcendental equations, to
be solved for an upper bound 4, and the extent of the plastically deforming region. A
statically admissible stress field is then determined which is related to the previously chosen
velocity field by the flow rule. It is shown that the determination of the lower bound 4 leads
to the same transcendental equations established before, thus giving the result 4, = 4, = Ai*
and that we have a complete solution.

The coupled transcendental equations were solved by using elementary numerical
methods with the choices of values for £ and ¢, sampling the entire region of validity of
the solution in the parameter space. It is further shown that the presence of the small
parameter ¢ enables us to develop an approximate analytical solution. We thus obtain
explicitly the dependence of the limit load and the extent of the plastically deforming region
on the geometric parameters of the problem.

5.1. Kinematic solution

In order to choose a velocity field that is part of a complete solution, a few observations
are first madce about the stress resultant ficld. As indicated in Section 3, equilibrium demands
that n, and my, be continuous everywhere. Since at ¢ = ¢, we have the boundary conditions
(2) that n, = m, =0, there must be a region ¢y < ¢ < p* within which |n,) < 1 and
[my| < 1. Flow rule (7) then imposes

ey =k, =0 for ¢, <P <o*. (12)

Here ¢* is as yet unknown and is assumed to be less than a. Using eqns (9) and solving
eqn (12) for v and w which satisty an additional demand that at ¢ = ¢*, v = w = 0, we get

{l —cos (p* —-¢>)}
U= Wy

for ¢, <p<o*

o dSin (=)
W= “"{sin (sb*—«»o)}‘ (9
We choose

r=w=0 for ¢*<¢p<a (14)

The velocitics defined by eqns (13) and (14) constitute a kinematically admissible field with
continuous v and w, as shown in Fig. 2. But w’ is discontinuous at ¢ = ¢* indicating the
presence of a bending hinge.

The choice of eqn (14) implies that the shell remains rigid in the region ¢* < ¢ < x.
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Fig. 2. Velocity field at the limit state (for the case of ¢ = 0.005 and ¢, = 0.1). The location of the
bending hinge at the limit state is indicated by ¢*. The solution is valid for arbitrary values of x,
between ¢* and m/2.

In the deforming parts of the shell, the non-zero generalized strain rates as calculated from
eqns (9) arc

_Jsin (¢* =) + (1 —cos (* —¢)) cot $ .
Cp =W u{ T a0 =) } for ¢o<hp<d

= —w, cot ¢ f by < b < p*
" sin (d’*-(b()) or Po s f
_ Wy Cos (P*—o)

7 in @ty 0T ()

where 3(¢p — ¢*) is the Dirac delta function.
The upper bound 4, can now be calculated from eqn (11)

A, SN by sin (p* —py) = £(2 sin P* —sin ¢,) +sin P* —sin Pp, — (p* — py) cos H*.

(16)

In the above expression, ¢* is unknown. Since the aim is to obtain as close an upper bound
to A* as possible, ¢* is chosen such that i, is minimized. Imposing the minimization
condition, d4,/dé* = 0 ineqn (16), we get

iy SIN Py cOS (P* —py) = 26 cos P* +(P™ — ) sin P*. (17)

The solution of the coupled transcendental cquations, eqns (16) and (17), gives the lowest
2, possible under the chosen velocity field, and the extent of the plastically deforming region
as measured by ¢*. However, before we try to solve these equations, we establish a statically
admissible ficld related to the velocity field by flow rule (7).

5.2. Static solution
Consider the equilibrium equations, eqns (1). For convenience in further arguments,
these can be rewritten as
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g, sin @ €os ¢ = 4, sin Py COS Py —n, sin’ ¢ (18a)
1 .

(n, sin ¢) ~ p— {4 sin ¢y cos ¢y —n, sin” ¢} = n, cos ¢ (18b)

(m, sin ¢)" — Tcos @ {4 sin @o cos o —n, sin® @} = m, cos ¢. (18¢)

Here the variable 4 is replaced by 4, to indicate that we are in the process of calculating
a lower bound to 4*. Equation (18a) is obtained by eliminating n, from eqns (1a) and (Ib).
integrating the resulting expressions and substituting conditions (2) and (3). Use of eqn
(18a) in egns (1b) and (lc¢) results in eqns (18b) and (18c¢).

According to the lower bound theorem, each statically admissible field satisfying eqns
(18). (4) and (2) provides a 4; as given by eqn (3). The form of eqns (18b) and (18¢) suggests
the following viewpoint: the variables n, and m, can be viewed as “generating functions”
which can be chosen in the interval [¢,. 2] such that their magnitudes are less than unity
{note that both of them can be discontinuous). Each such choice, in view of eqns (2), (18b)
and (18c) provides n, and my fields in the interval [y, ] as functions of 4,. By equating the
higher value of the maxima of these two fields to unity, we can ensure the satistaction of
cxpressions (4) and obtain a value for 4. The aim is to make prudent choices of n, and my,
such that 4 is maximized. In order to facilitate this optimization process, we take the
following hints from kincmuatics.

Assuming that the velocity ficld chosen is part of a complete solution, we have the
folowing conditions on the stress resultant ficld because of flow rule (7):

for po <P < p*, ¢, >0 n, =
implics
ky <0 my = —1
at ¢ = p*, k,>0 implics my, =1. (19)
As deminded by expressions (19), m, = | and my, = — 1 arc imposcd in eqns (18b) and

(18¢) which are then integrated to obtain the following expressions valid in the region
o S P < P*:

ny = (Pp—dy) cot P+ 4, sin ¢, cos ¢,(1 —tan ¢, cot ¢) (20a)
sin ¢,
emy = n,—(1+¢) <| - ;(4’-) (20b)

For this region, ¢, can be calculated using eqn (18a). Again from expressions (19), we have
my = 1 at ¢ = $*. Imposing this condition in eqn (20b), we get
Ay Sin g sin (p* —py) = &(2sin p* —sin Py) +sin ¢* —sin Py — (P* — Py) cos P*.
(2
The restrictions imposcd by equilibrium and yicld conditions on mj, at ¢ = ¢* are now

investigated. It has already been noted that m, must be continuous in order to satisfy
cquilibrium at any ¢. Let m), and m, be discontinuous at ¢ = ¢*. From eqn (18c¢), we have

[11,] sin ¢* = [m,) cos ¢* (22)
where the square brackets indicate the difference between the right and the left limits at

¢ = ¢* in the values of the respective variables. The choice my = —1 for ¢y € ¢ < ¢*
implies that in order not to violate yicld, we must have 2 = [m,] 2 0. Since ¢, < ¢* < 7/2.
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Fig. 3. Stress resultant field at the limit state (for the case of £ = 0.005 and ¢, = 0.1). Note the
discontinuity of n, and the slope-discontinuity of n, at ¢ = ¢*. The solution is valid for arbitrary
vilues of 2, between ¢* and =/2.

eqn (22) then imposes the condition that [y} cannot be negative. It is known from egn
(20b) that m;, can only be greater than or equal to zero as ¢ approaches ¢* from the left,
and since m, = | at ¢ = $*, m;, should be non-positive on the right-hand side of ¢* for
the sattstaction of the yicld condition. Thus, the only way all these restrictions on iy can
be satisfied is by demanding that mij, be continuous across ¢ = ¢* with its value being equal
to zero. We then obtlain

Ay sin by cos (Pp*—hy) = 26 cos p* +(p* — ) sin P*. (23)

Equations (21) and (23) can now be solved for 4 and ¢* in terms of ¢ and ¢,. Comparing
these static equations with the kinematic ones, eqns (16) and (17), we see that both pairs
are wdentical, and henee

A"l = ;'u = ;..*. (24)

Thus, we can replace 4, in eqns (16) and (17), and 4, in eqns (21) and (23) by i*. As yet,
the stress resultant ficld is not specitied in the region ¢* < ¢ £ x which we propose to do
next.

Imposing nrj, = 0 at ¢ = ¢$* in eqn (Ic), we have

gy =2ecot p* at = Pp*. (25)
For ¢* € ¢p < 2 wechoosem, = Land m, = — 1. From egns (l¢), (18a) and (1a), we have
¢, = 2 cot ¢ (264)
A sin ¢, cos ¢ R
ny = L-~é”~ 05 by ~2tcot’ ¢ forgp* <p < (26b)
sin® ¢
ng = 2e—n,. (26¢)

It is easily scen that my, and ¢, are continuous at ¢ = ¢* and the continuity of n, given by
eqns (20a) and (26b) can be established by using eqn (23). The stress resultant fields are as
shown in Fig. 3. It can be readily verified that m, and m, do not violate yield conditions
(4) anywhere. Equations (20a) (monotonically increasing n,) and (26b) (monotonically
decreasing n,) imply that n, attains its maximum at ¢ = ¢*. Its value at this location can
be obtained from eqn (20b) by using the fact that my, = 1 at ¢ = ¢*. It is then easy to show
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Fig. 4. Validity region of the solution in the parameter space when 2 = r/2. The internal border OB
sepurates the two regions defined by the approximate analytical solution (31).

that for the parameter values of interest (region OABCD of Fig. 4), n, does not violate
yield. The function s, being | for ¢y € ¢ < ¢* and differing from n, only by 2¢ (note that
£ < 0.025) in magnitude in the region ¢* < ¢ <€ a also satisfies the yield condition. Thus,
a statically admissible ficld has been cstablished which together with the velocity field
defined by egns (13) and (14) provides a complete solution to the problem.

5.3. Approximations

We observe that A* and ¢* arc independent of the dome angle x and the complete
solution is valid it ¢* is less than x. By knowing ¢ and ¢, we can solve eqns (21) and (23)
numerically for 4* and ¢*. For convenience in following such a procedure, we eliminate A*
from egns (21) and (23) to get

tg(A, o) +h(A, o) =0 (27
where
sin ¢,
Y(B.y) =~ (cos A-2)
h(A, ) = (%Oosg%’- (A—sin A cos A)+sin ¢,(1 —cos A)
and

A = P*—¢y.

Equation (27) can now be solved for A by using an iterative numerical scheme and the
resulting value of ¢p* would enable the calculation of 4* in eqn (23). However, an analytical
solution, even if approximate, is desirable as it gives explicitly the form of dependence of
the strength of the structure on the parameters of the problem. The key to an approximate
analytical solution in the present case is the observation that & is a small parameter.
Consider now the limiting case of & = 0. From eqn (27), we have (A, ¢,) = 0. which
cian be written as
A ) _)
tan ¢, (1 —cos A) + os A TSI Al=0 (28)

where ¢, has a given value between 0 and n/2. Since we only consider cases where x < n/2,
we must have 0 < A < #/2. Thus. tan ¢, as well as the terms within both parentheses are
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Fig. 5(b). Actual limit load as a function of the non-dimensional shell thickness for representative
values of the angular size of the cut-out. The curves are generated by using the numerical solution
for 4* (shown in Fig. 5(u)) in eqn (33}, The constant multiplicr 480, is taken to be unity,

non-negative, Therefore, the only way eqn (28) can be satistied for a given ¢, is by equating
the terms within parcntheses to zero. This implics that A = 0 when e = 0.
As ¢ tncreases [rom zero, sinee eqn {27) is composed of smooth functions, we expect
A to increase gradually, Because ¢ has to be less than about 0.025 for thin shell theory to
be valid, we adopt the following procedure. We approximate sin A und cos A by retaining
only a few terms of their respective infinite power series in A, We solve the resulting
equations with further approximation and then show that the neglection of higher order
terms was indeed justified within the domain of interest of the parameter space. We also
compure, for certain chosen values of the parameters, the approximate analytical solution
with that obtained by applying an iterative procedure to solve eqn (27).

Equation (27) can be approximated as

1s

- 3 A .
—£ $in ¢+ 1A% cos ¢y + oy sin gy =0

noting that £ « | and defining ¢ = (4\/(25),3) cot ¢y and & = A/\/(2¢) we have

8 +57—-1=0

where 0 < ¢, < n/2 implies oo > ¢ > 0. An approximate solution to eqn (30) is

d=~1 for0<ce<i

~c " for l €< m.

Again, approximating sin A and cos A in eqn {23}, we get

(29)

(30)

3D
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i* = J(20){0+(2) cot dy(1+6°)} (32)

where 0 is given by eqns (31). Equations (31) and (32) give explicit expressions for the extent
of the plastically deforming region and the limit load, respectively, as functions of ¢ and

b0

5.4. Region of validity

The region of validity of the solution obtained in the parametric space (¢,.¢€) is
now established. As shown in Fig. 4. its border OABCD is determined by the following
constraints.

(1) The parameter ¢ = T/4R is. by definition, positive and for thin shell theory to
reasonably approximate the actual three-dimensional solution. 0 < ¢ £ 0.025.

(2) A general conclusion that can be reached by a study of structural members subjected
to highly localized loading is that only if the diameter of the loaded region is at least of
the order of the shell thickness would a limit load obtained by using thin shell theory be
close to a three-dimensional solution (refer to Anderson and Shield (1966)). Otherwise. the
deformation near the load would not be through the thickness. Therefore, we restrict
ourselves to the region € < ¢,

(3) For the solution obtained to be valid, we must have ¢* < . This constraint can
be rewritten as ¢, + A < a. Line CD represents this condition for the limiting case of 2 = /2
with the equation ¢+ /(26) = n/2.

{4) Linc OB is given by the condition ¢ = 1, and represents the border between the
two regions defined by the approximate analytical solution (31).

Now it only remains to show that egn (29) is & good approximation to eqn (27). An
examinition of the values attained by A in the region OABC of Fig. 4 shows that it reaches
its maximum along BC and is equal to 0.32. For this value, the crror involved in taking
sin A = A and cos A = 1 is less than 5%, For certain chosen values of ¢y, the variation of
A* with respect to £ as given by both the numerical and approximate analytical solutions
are shown in Fig. S(a). We observe that the non-dimensional limit load A* increases rapidly
when #is extremely small with di*/de being infinite at & = 0. However, the actual limit foad
is given by

Q* = A*N, = ¢i*(4Ray). (33

The variations of Q* with ¢ are shown in Fig. 5(b). The collapse mode corresponding to
the limit load is given by velocity fields (13) and (14) resulting in the opening up of a small
annular region of angular width A (at most, equal to \/(21:)).
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